direct product, p-group, abelian, monomial
Aliases: C42, SmallGroup(16,2)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C42 |
C1 — C42 |
C1 — C42 |
Generators and relations for C42
G = < a,b | a4=b4=1, ab=ba >
Character table of C42
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | -1 | -i | i | i | 1 | -1 | -1 | i | -i | -i | i | -i | 1 | linear of order 4 |
ρ6 | 1 | 1 | -1 | -1 | i | -i | -i | 1 | -1 | -1 | -i | i | i | -i | i | 1 | linear of order 4 |
ρ7 | 1 | -1 | -1 | 1 | -1 | i | -1 | -i | -i | i | -i | -i | i | 1 | 1 | i | linear of order 4 |
ρ8 | 1 | -1 | -1 | 1 | 1 | -i | 1 | -i | -i | i | i | i | -i | -1 | -1 | i | linear of order 4 |
ρ9 | 1 | -1 | 1 | -1 | -i | 1 | i | -i | i | -i | -1 | 1 | -1 | -i | i | i | linear of order 4 |
ρ10 | 1 | 1 | -1 | -1 | i | i | -i | -1 | 1 | 1 | i | -i | -i | -i | i | -1 | linear of order 4 |
ρ11 | 1 | -1 | 1 | -1 | i | -1 | -i | -i | i | -i | 1 | -1 | 1 | i | -i | i | linear of order 4 |
ρ12 | 1 | 1 | -1 | -1 | -i | -i | i | -1 | 1 | 1 | -i | i | i | i | -i | -1 | linear of order 4 |
ρ13 | 1 | -1 | 1 | -1 | i | 1 | -i | i | -i | i | -1 | 1 | -1 | i | -i | -i | linear of order 4 |
ρ14 | 1 | -1 | -1 | 1 | 1 | i | 1 | i | i | -i | -i | -i | i | -1 | -1 | -i | linear of order 4 |
ρ15 | 1 | -1 | 1 | -1 | -i | -1 | i | i | -i | i | 1 | -1 | 1 | -i | i | -i | linear of order 4 |
ρ16 | 1 | -1 | -1 | 1 | -1 | -i | -1 | i | i | -i | i | i | -i | 1 | 1 | -i | linear of order 4 |
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)
(1 10 15 7)(2 11 16 8)(3 12 13 5)(4 9 14 6)
G:=sub<Sym(16)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,10,15,7)(2,11,16,8)(3,12,13,5)(4,9,14,6)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,10,15,7)(2,11,16,8)(3,12,13,5)(4,9,14,6) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)], [(1,10,15,7),(2,11,16,8),(3,12,13,5),(4,9,14,6)]])
G:=TransitiveGroup(16,4);
C42 is a maximal subgroup of
C8⋊C4 C4≀C2 C4⋊C8 C42⋊C2 C4.4D4 C42.C2 C42⋊2C2 C4⋊1D4 C4⋊Q8 C42⋊C3
C42 is a maximal quotient of
C2.C42 C8⋊C4
Matrix representation of C42 ►in GL2(𝔽5) generated by
4 | 0 |
0 | 3 |
3 | 0 |
0 | 2 |
G:=sub<GL(2,GF(5))| [4,0,0,3],[3,0,0,2] >;
C42 in GAP, Magma, Sage, TeX
C_4^2
% in TeX
G:=Group("C4^2");
// GroupNames label
G:=SmallGroup(16,2);
// by ID
G=gap.SmallGroup(16,2);
# by ID
G:=PCGroup([4,-2,2,-2,2,16,37]);
// Polycyclic
G:=Group<a,b|a^4=b^4=1,a*b=b*a>;
// generators/relations
Export
Subgroup lattice of C42 in TeX
Character table of C42 in TeX